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Abstract: In planar metamaterial lenses, the focal point moves with the 

frequency. Here it is shown numerically that this movement can be 

controlled by properly engineering the dimensions of the metamaterial-

based phase shifters that constitute the lens. In particular, such lenses can be 

designed to exhibit unusual chromatic aberration with the focal length 

increasing, rather than decreasing, with the frequency. It is proposed that 

such an artificial “reverse” chromatic aberration may optimize the 

transverse resolution of millimeter wave diagnostics of plasmas and be 

useful in compensating for the natural “ordinary” chromatic aberration of 

other components in an optical system. More generally, optimized 

chromatic aberration will allow for simultaneous focusing of several objects 

located at different distances and emitting or reflecting at different 

frequencies. 
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1. Introduction 

Many optical systems suffer from chromatic aberration (CA). A typical lens focuses higher 

frequencies f closer to the lens and lower frequencies further away, due to the fact that the 

refractive index typically increases with frequency. A lens exhibiting “reverse” CA (RCA), 
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meaning that it focuses higher f at longer focal lengths l, could be used to correct for CA in 

these systems. 

There are also cases in which finite amounts of CA or RCA are desirable but need to be 

optimized. Some of these cases can be found in millimeter wave diagnostics [1–4] of plasmas 

[5]: electron cyclotron emission depends on the local magnetic field; as a result, different f are 

emitted at different locations in a non-uniformly magnetized plasma. Similarly, externally 

injected waves of different frequency f are reflected at different locations in a plasma of non-

uniform density. These considerations translate in f-dependent focusing requirements: for the 

highest resolution, the focal length l (of the order of 0.5-1.5m) needs to increase with f 

(typical central frequency: 4-140GHz) by up to 2cm/GHz over ranges ∆f of several GHz or 

tens of GHz. 

Finally there are cases, for instance in photography and surveillance, in which objects 

located at different distances and emitting or reflecting at different frequencies need to be 

imaged on the same focal plane. 

RCA was recently observed in a metamaterial lens [6] developed for phased array antenna 

applications at 8-12GHz. RCA is an undesired property for that application. In this work, we 

examine metamaterial lenses of the type reported in [6] and numerically optimize them for 

plasma diagnostics in the same range of frequencies. The optimization method, however, can 

be easily extended to the other applications mentioned above, as well as to different 

frequencies, including visible, where similar geometries are utilized, although not optimized 

for RCA. 

 

Fig. 1. Topology of a third-order bandpass MEFSS. (a) Exploded view of overall lens design. 

(b) Top views of a unit cell capacitive and inductive layers. (c) Equivalent circuit model valid 

for normal incidence. 

Each lens consists of several spatial phase shifters, or pixels, that populate its aperture. 

Each spatial phase shifter is the unit cell of a miniaturized-element frequency selective surface 
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(MEFSS) of the type reported in [7]. MEFSSs are composed of periodic arrangements of sub-

wavelength capacitive patches and inductive wire grids. An MEFSS composed of N 

capacitive layers alternated by N-1 inductive layers acts as an N
th

-order coupled-resonator 

bandpass filter [7]. Figure 1(a) and 1(b) shows an exploded view of an MEFSS with a 3rd-

order bandpass response. The phase delay provided by an MEFSS is controllable by varying 

the physical and geometrical parameters of its constituting unit cell (e.g., dimensions of the 

capacitive and inductive layers, the thickness and material of the dielectric layers, etc.). In the 

design considered in this paper, each cell has a width D = 6.1mm which is much smaller than 

the wavelength (λ = 30mm at f = 10GHz). Figure 2 illustrates the benefit of this feature. For a 

typical lens, a smooth variation in phase delay can be achieved by light rays at different 

distances from the optical axis experiencing different path lengths through the lens (Fig. 2(a)). 

In constructing a lens with discrete electrically large unit cells (e.g. microwave lenses based 

on arrays of receiving antennas connected to arrays of transmitting antennas using 

transmission lines with variable lengths) the phase delay does not change smoothly with the 

distance from the optical axis (Fig. 2(b)). However, the continuous nature of a traditional lens 

is regained in the limit that cells much smaller than the wavelength can be constructed and 

assembled (Fig. 2(c)). 

 

Fig. 2. The phase delay profile of a typical glass lens is a smooth function of radial distance (a). 

This is lost in discretized lens systems (b) but regained in the limit of small aperture features 

(c). 

A better understanding of the operation of this structure can be gained by considering the 

equivalent circuit in Fig. 1(c), which is valid for normal incidence. The patches in the first, 

third, and fifth metallic layers are modeled with parallel capacitors and the wire grid layers 

are modeled with parallel inductors. The dielectric substrates separating these layers are 

modeled with short transmission lines of length h equal to the thickness of the dielectric in 

Fig. 1(a) and characteristic impedance 0 rZ Z ε= , where �r is the dielectric constant of the 

substrate and Z0 = 377� is the free space impedance. Free space on each side of the cell is 

modeled with semi-infinite transmission lines with characteristic impedances Z0. 

The effective capacitance of a 2-D periodic array of square metallic patches separated by 

gaps g1 as in Fig. 1 is [7]: 
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where �eff is the effective permittivity of the medium in which the capacitive patches are 

immersed. A similar expression relates the capacitance C2 of the inner capacitive layer to the 

spacing g2 between adjacent capacitive patches in that layer. 

#162789 - $15.00 USD Received 15 Feb 2012; accepted 22 Mar 2012; published 30 Mar 2012
(C) 2012 OSA 9 April 2012 / Vol. 20,  No. 8 / OPTICS EXPRESS  8763



  

The effective inductance of a periodic wire mesh as pictured in Fig. 1(a-b) is described by 

[7]: 

 

0

2

1
ln

2 sin( )
eff w

D

D
L

π
µ µ

π

 
=  

   (2) 

Here �0 is the free space permeability, �eff is the effective permeability of the medium, and 

w is the strip width (Fig. 1(b)). Equations (1) and (2) are valid only when the structure is 

placed in a homogenous medium away from metallic objects and when the parameters w, g1, 

and g2 are not varied over the array. The similarity between this circuit model and a 3rd order 

coupled resonator frequency bandpass filter can be seen by replacing the transmission line 

sections with their equivalent circuit models, composed of a series inductor and shunt 

capacitor. A discussion of this can be found in [7]. 

 

Fig. 3. Parameter sweeps highlighting the behavior of a 3rd order MEFSS when varying (a) g1 

(b) g2 or (c) w, all the rest remaining fixed. 

A wave passing through the metamaterial lens in Fig. 1(a) experiences a frequency-

dependent attenuation and phase shift. These can be calculated from the transfer function 

describing the equivalent circuit in Fig. 1(c): 
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where A, B, C and D are given by 
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Here Z and 
r

cω

ε
β =  are respectively the characteristic impedance and propagation 

constant of the transmission line. The substitution of Eq. (1-2) in Eq. (3-4) and extraction of 

phase φ from Eq. (3) yields a conceptually straightforward, but algebraically complicated 

relationship between φ, f, w, g1 and g2, that suggests that the frequency dependence of φ can 

be altered by varying the geometrical parameters w, g1 and g2. That complicated expression, 

however, is approximate, in the measure in which Fig. 1(c) is only an approximate description 

of the array in Fig. 1(a). 

Instead, for more realistic estimates (for example to take into account the finite number of 

cells), the device in Fig. 1(a) was modeled numerically for various choices of g1, g2, and w, 

and the corresponding transmission and phase shift were calculated using full-wave EM 

simulations in CST Microwave Studio. Figure 3 illustrates how the function φ (f) varies with 

g1 (Fig. 3(a)), g2 (Fig. 3(b)) and w (Fig. 3(c)), all the rest remaining fixed. Figure 4 illustrates 

how φ at a fixed f varies with g1, g2, and w. 

This discussion and numerical optimization applies to a single, uniform array. Then, 

similar to Fig. 2(c), we combine seven concentric “zones” about the optical axis. Each zone is 

separately optimized to yield a certain phase shift as a function of the frequency φ (f). 

Note in Fig. 4 that in general there are many (in fact, infinite) sets of g1, g2, w solutions 

yielding the desired phase-shift φ for a certain frequency and zone. However, note also that, 

for each zone, different phases are required for each frequency. 

 

Fig. 4. 3D iso-phase contour plot over g1, g2, and w for f = 10GHz. Note that for every desired 

φ, parameter solution g1, g2, w is not unique for a given f. However, constraining φ at multiple f 

reduces the choices of g1, g2, and w. 
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2. Numerical optimization 

The starting point for our RCA optimization was an existing experimentally and numerically 

well-characterized 3rd order MEFSS design with a bandpass of 9-11GHz [6–8]. 

For proof of principle, we initially set the goal of modifying that design in such a way that 

it had a focal length l = 30cm at f = 8GHz and l = 126cm at f = 12GHz. These focal lengths 

were chosen since similar focal lengths will be needed in the DIII-D [9] tokamak [5], but at 

10 times higher frequencies (f = 80-130GHz) [10]. The relative variation of focal length 

considered here is the same. The miniaturization and other issues associated with the higher 

frequencies are left as future work. The requirement on the dependence of l on f translates into 

requirements on the φ (f) dependencies in the various “zones” [6]. 

The order of an MEFSS puts a constraint on the aperture size. For a 3rd order MEFSS for 

example, there is a 270° phase variation between 9 and 11GHz. The technique used to obtain 

the desired phase delay as a function of frequency, φ (f), is to detune the center frequency of 

the MEFSS by varying the dimensions g1, g2, and w (Fig. 1). The dielectric thickness h is kept 

constant. The detuned f, however, should remain within the passing band to ensure high 

transmission. At the same time, it is desired here that φ varies linearly with f. These two 

requirements limit the phase variation at any frequency (within the passing band) to 270°. For 

a planar lens simple geometry gives the aperture limitation for a given frequency and focal 

length as: 

 

1
2 2

2max2A l l
k

φ ∆ 
= + −  

     (5) 

where A is the aperture diameter, l is the focal length, k is the frequency dependent wave 

number, and �φmax is the phase variation between the optical axis and the edge of the aperture. 

This gives an aperture constraint of A = 26.6cm at 8GHz. What is desired is the largest phase 

variation possible so that a large amount of control over the focus is maintained. There is, 

however, a tradeoff. The phase response required for the m-th zone is determined by the radial 

distance rm from the optical axis to a point half way between the inner and outer radius of the 

zone. Increasing the number of zones decreases the width of each zone due to the limitation of 

the aperture which means that for the outermost zone, rm approaches 2
A , and therefore the 

maximum phase variation, for a large number of zones. However, using more zones requires 

fewer cells to be used in each zone, with the result that the infinite array used in the numerical 

modeling of a single zone is no longer a satisfactory approximation. The use of 7 zones was 

chosen as a reasonable compromise between the two competing effects. 

The phase delay for the center zone (z = 0) is found from the aperture (Eq. (5)) and focal 

lengths to be: 
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where φ′ is a constant phase to be added to all zones of the lens. 

The phase delay introduced by the m-th zone, located at a radial distance rm from the 

optical axis, is: 
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Therefore the phase difference between zones 0 and 6 is: 
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For f = 8GHz and l = 30cm this phase difference (which will be one of the goals of our 

optimization) evaluates to: 

 
218φ∆ = °

 (9) 

For f = 12GHz and l = 126cm it evaluates to: 

 
81φ∆ = °

 (10) 

It is evident from the goals set in Eq. (9) and (10) that the desired effect is to have phase 

responses that converge towards higher frequencies. Converging phase responses would mean 

that for high f the phase delay differences between zones become small, and so since all zones 

would be phase-shifting the wave by nearly the same amount an incident plane wave would 

remain approximately planar, i.e. that it’s focal length is very large which is the behavior we 

want at high f. 

To ensure a high degree of accuracy in finding parameters that not only match the desired 

phase at 8 and 12GHz but also have a linear phase response a computerized optimization was 

carried out in two steps. First, a 3D parameter scan was conducted: the dimensions w, g1, and 

g2 were varied and the corresponding phase shift φ was calculated for various frequencies. A 

contour plot of φ in 3D (as a function of w, g1, and g2) is shown in Fig. 4 for f = 10GHz. 

Similar sets of data were generated for f = 8, 8.5, 9,…,12GHz. For each zone then, 

Mathematica can be used to locate the set of parameters that approximately minimizes the 

goal function value (GFV) Gi: 
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( )

1 2

8,8.5,...,12

, , i

i f f

f GHz

G w g gφ φ
=

 = − ∑
  (11) 

where φf (w,g1,g2) is the actual phase value obtained in CST simulations at frequency f for a 

specific set of parameters w, g1, and g2 . By contrast, φf
(i)

 is the desired phase value at 

frequency f and for zone i. 

Minimizing Gi is equivalent to a least-square minimization of the discrepancy between the 

actual and desired phases at frequencies f = 8,8.5,…12GHz in the X-band. Note however, that 

Eq. (6)–(8) only determine the phase differences between zones at certain frequencies and 
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Fig. 5. Phase response of the numerically optimized zones (solid lines) and their corresponding 

desired phase responses (dashed lines). 

does not explicitly determine the desired phase values, φf
(i)

, of an individual zone. Only in 

choosing the desired phase values for one zone are they then determined for the remaining 

zones. The desired phase response of a zone can be characterized by the phase value at 8GHz 

(offset) and the slope given by the difference in phase between 8 and 12GHz. For zone i then, 

using Mathematica and Eq. (11), the GFV was minimized not only by varying the parameters 

w, g1, and g2, but also by varying the offset and slope which changes the desired phase values 

φf
(i)

. An optimum offset and slope was found that simultaneously minimized the GFV for zone 

0 and 6. This ensured that the largest GFV returned by any of the 7 zones would be as small 

as possible. Using this offset and slope, the desired phase responses were evaluated for all the 

zones. With the desired phase responses determined, a set of parameters was found for each 

zone that minimized the GFV. 

Once the approximate parameter minimum was found in Mathematica, further finer scans 

of w, g1, and g2 were performed by means of dedicated full-wave CST simulations. This led to 

identifying the best dimensions w, g1, and g2 for the closest match of φ (f) with its goal for 

zone i. The procedure was repeated for all zones. The results, summarized in Fig. 5 and Table 

1 confirm that it is possible to engineer a zoned lens of reverse chromatic aberration as 

desired. The results vary in their tolerance. Zone 6 for example, exhibits behavior very close 

to the desired phase response over the 8-12GHz frequency range except near 8GHz where 

there is a deviation of approximately 30°. This maximum deviation diminishes for the lower 

zones, but the overall behavior also becomes less linear and the phase response is seen to be 

alternatively above and below the desired linear response. 

Three parameters were varied for each zone: w, g1, and g2, but it is expected that a higher 

degree of control of φ (f) can be achieved by adding other free parameters such as D, h, or by 

allowing different layers to have different dimensions, or by considering MEFSS of higher 

order than N = 3. 
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Table 1. Optimal Parameter Dimensions by Zone 

Zone w (mm) g1 (mm) g2 (mm) 

0 0.245 0.233 0.540 

1 0.199 0.274 0.510 

2 0.763 0.278 0.511 

3 0.861 0.364 0.498 

4 1.193 0.436 0.500 

5 1.485 0.502 0.494 

6 1.931 0.507 0.514 

3. Conclusion 

In conclusion it has been shown by numerical scans of the phase shift introduced by a 3rd 

order miniaturized element frequency selective surface (MEFSS) as a function of its 

geometrical properties, that the phase response in the various zones composing a composite 

metamaterial lens can be manipulated to craft the chromatic aberration in a desirable manner, 

hereby including “reverse” chromatic aberration. Modeling was performed in the 8-12GHz 

range, which is of interest for millimeter wave diagnostics in low-field fusion plasmas. Future 

work will address the extension to higher frequencies, relevant to fusion devices operating at 

higher magnetic field, as well as to non-fusion applications. 
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