« The Neutral Beam Injector (NBI) installed on the Lithium Tokamak Experiment Beta
(LTX-B) continues to result in beam heating observations below that expected by
TRANSP NUBEAM and other modeling.

 Avalilable experimental data on beam performance shows no obvious discrepancy from
model inputs

« A scan of beam voltage and current to measure beam divergence revealed an
Incompatibility between the assumption of full acceleration grid utilization and a real
beamlet divergence value

« To assess the actual beam profile entering the tokamak and align beam modeling with
actual performance, a 2D tungsten wire calorimeter has been developed

 To limit deflection of the horizontal wires during repeated heating/cooling of the wires, a
tensioning system was implemented

« Development and construction of the diagnostic will be presented, with first data expected
within the next month

This work was supported by the U.S. D.O.E. contracts DE-SC0019006 and DE-AC02-

09CH11466.

Motivation

Major/Minor Radius R/a 40/26 cm
Toroidal Field B 0.18T 03T
Plasma Current I, 85 kA 135 kA
Flattop Duration teiat ~15 ms ~35ms
Electron Temperature T, ~250 eV ~400 eV
lon Temperature [F ~100 eV ~200 eV
Energy Confinement T; ~2 ms ~5ms
Neutral Beam Current [ - ~35 A
Neutral Beam Energy E b - 13-20 keV
Neutral Beam Duration t,. - 5-10 ms

Neutral beam injection provides access to numerous investigations:

e LTX- B provides testbed for study of energetic particles (EPs) in low-recycling boundary
plasmas

* Flat T, profiles observed in LTX [1] and LTX-B remove (or diminish) temp-gradient
modes

* Fueling essential for plasma sustainment during low-recycling phase (no gas puffing)
* Auxiliary heating probes energy scaling in low-recycling plasmas
* First beam heating of a flat-temperature profile observed [2]
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* Beam optimization in 2022 resulted in data consistent with CHERS

* Energy to calorimeter consistent with original operation

* Some questions remain regarding beam geometry

* CHERS peak fitting suggested < 0° beamlet divergence

* Under filling of HV grid used to explain, but a direct measure of beam
performance is desirable

* Wire calorimeter can give direct measure of beam footprint during
discharge [3]
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Design and Modeling

e Space along beamline into vessel extremely
limited, plan to mount just inside neutralizer

* Conveniently unused mount ring, no modifications
to tank are necessary

e Wiring through 4” port at tank bottom (not shown)
e Design to fit through 12” conflat on tank side

* Many positives:
* Naturally beam-normal
* Doesn’t require machine vent to access

e Potential drawbacks

 Residual ion fraction could cause vertical

asymmetry (but easy to determine and account
for)

Thermal Equilibration Timescales

transverse equilibration

Transverse

 Surface heating applied to one quadrant of wire for first few

frames of simulation

» After heating turns off wire allowed to equilibrate, temp

measured on front/back surface

* Equilibrates on timescale of milliseconds
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* Very hot central “wafer” started with Twall + 1000 deg allowed to

equilibrate into 10 cm wire

* Including blackbody lowers wire temp, but only a few degrees

after 10s

* Equilibrating back to Twall (=300deg here) instead of equal <

temperature along wire

* Equilibrates on timescale of seconds

Blackbody

* Initial temperature using present

beam parameters vs wire
diameter

* Wires cool to wall temp on
timescale of ~1 minute (won’t
limit shot cycle)
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.254 mm wire analysis

* Max dT to wire center ~1000 deg

* Transverse heating timescale negligible (< 1ms including
heating phase)

e Axial (10 cm wire here) nearly accomplished after 0.1 s
before blackbody does much of anything

* Takeaway: timescales very separable

0.254mm diam wire Beam power to wires: 2.52%, max dT: 1088.0 K
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* 8x8 grid of 0.01” diameter tungsten

wire with 0.75” spacing

* Spring tensioned on top and right
* Crimp connections for springs, ring

terminals, Vout

* Small enough to fit through
conflat bore

* Modular build using individual wire

segments crimped together
* Easier repair

* A relaxed connection between
adjacent wires puts spring
tension in alignment with wire

12”

“cold” wire

A 337

F1 337

336

335

t=50s

¥ 334

- 500

- 400

¥}
Q2
o

200

- 100

wire =dT= (K)
wire lengthening [mm]

o=
[
Ln

e Stainless steel construction provides
rigidity and shielding of sensitive
components from beam path

e Micor insulation bars used to isolate wire

from frame

* PEEK 25 pin connection allows for easy
detachment in case of upgrade or
maintenance requirements
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Custom Kapton wiring assembly for in-vacuum
wiring to vacuum feedthrough

Installation on exit port of LTX NBI neutralizer tank

e 20 AWG current leads and 28 AWG voltage taps via
custom cabling from Lesker 25 pin DSUB vacuum

feedthrough port

* Constant current source provided by Rigol DP831A
programmable DC power supply

* 17 channels digitized on NI PXI-6250 DAQ

Initial Data

Forthcoming pending
resolution of vented
maintenance phase!
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Each transverse wire length created individually and
mechanically joined during assembly at V,,,; locations
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