

• The Neutral Beam Injector (NBI) installed on the Lithium Tokamak Experiment Beta $(LTX-\beta)$ continues to result in beam heating observations below that expected by TRANSP NUBEAM and other modeling.

Summary

- Available experimental data on beam performance shows no obvious discrepancy from model inputs
- A scan of beam voltage and current to measure beam divergence revealed an incompatibility between the assumption of full acceleration grid utilization and a real beamlet divergence value
- To assess the actual beam profile entering the tokamak and align beam modeling with actual performance, a 2D tungsten wire calorimeter has been developed
- To limit deflection of the horizontal wires during repeated heating/cooling of the wires, a tensioning system was implemented
- Development and construction of the diagnostic will be presented, with first data expected within the next month

This work was supported by the U.S. D.O.E. contracts DE-SC0019006 and DE-AC02-09CH11466.

Motivation

Maximum Parameters		LTX	LTX-β
Major/Minor Radius	R/a	40/26 cm	
Toroidal Field	B _T	0.18 T	0.3 T
Plasma Current	I _p	85 kA	135 kA
Flattop Duration	t _{flat}	~15 ms	~35 ms
Electron Temperature	T _e	~250 eV	~400 eV
Ion Temperature	T _i	~100 eV	~200 eV
Energy Confinement	τ _E	~2 ms	~5 ms
Neutral Beam Current	I _{nbi}	-	~35 A
Neutral Beam Energy	E _{nbi}	-	13-20 keV
Neutral Beam Duration	t _{nbi}	-	5-10 ms

Neutral beam injection provides access to numerous investigations:

- LTX- β provides testbed for study of energetic particles (EPs) in low-recycling boundary plasmas
- Flat T_e profiles observed in LTX [1] and LTX- β remove (or diminish) temp-gradient modes
- Fueling essential for plasma sustainment during low-recycling phase (no gas puffing)
- Auxiliary heating probes energy scaling in low-recycling plasmas
- First beam heating of a flat-temperature profile observed [2]
 - Beam optimization in 2022 resulted in data consistent with CHERS
 - Energy to calorimeter consistent with original operation
 - Some questions remain regarding beam geometry
 - CHERS peak fitting suggested < 0° beamlet divergence
 - Under filling of HV grid used to explain, but a direct measure of beam performance is desirable
 - Wire calorimeter can give direct measure of beam footprint during discharge [3]

beam

HTPD Apr 2024

Design and Modeling

for)

Thermal Equilibration Timescales

Transverse

neutralizer

- Surface heating applied to one quadrant of wire for first few frames of simulation
- After heating turns off wire allowed to equilibrate, temp measured on front/back surface
- Equilibrates on timescale of milliseconds

Axial

- Very hot central "wafer" started with Twall + 1000 deg allowed to equilibrate into 10 cm wire
- Including blackbody lowers wire temp, but only a few degrees after 10s
- Equilibrating back to Twall (=300deg here) instead of equal temperature along wire
- Equilibrates on timescale of seconds

Blackbody

- Initial temperature using present beam parameters vs wire diameter
- Wires cool to wall temp on timescale of ~1 minute (won't limit shot cycle)

0.06

vertical sag [mm]

0.08

0.10

0.02

Spring selection

• Catenary experiment used to validate predicted vertical sag in wire vs tension of spring under max load

- Transverse heating timescale negligible (< 1ms including heating phase)

- Space along beamline into vessel extremely limited, plan to mount just inside neutralizer
- Conveniently unused mount ring, no modifications to tank are necessary
- Wiring through 4" port at tank bottom (not shown) • Design to fit through 12" conflat on tank side • Many positives:
- Naturally beam-normal
- Doesn't require machine vent to access
- Potential drawbacks
- Residual ion fraction could cause vertical asymmetry (but easy to determine and account

.254 mm wire analysis

- Max dT to wire center ~1000 deg
- Axial (10 cm wire here) nearly accomplished after 0.1 s before blackbody does much of anything • Takeaway: timescales very separable

- Stainless steel construction provides rigidity and shielding of sensitive components from beam path
- Micor insulation bars used to isolate wire from frame
- detachment in case of upgrade or maintenance requirements

Installation on exit port of LTX NBI neutralizer tank

- feedthrough port
- programmable DC power supply

Wire-calorimeter final design

- 8x8 grid of 0.01" diameter tungsten wire with 0.75" spacing
- Spring tensioned on top and right
- Crimp connections for springs, ring terminals, Vout
- Small enough to fit through 12" conflat bore
- Modular build using individual wire segments crimped together • Easier repair
- A relaxed connection between adjacent wires puts spring tension in alignment with wire

Construction

• PEEK 25 pin connection allows for easy

• 20 AWG current leads and 28 AWG voltage taps via custom cabling from Lesker 25 pin DSUB vacuum

• Constant current source provided by Rigol DP831A • 17 channels digitized on NI PXI-6250 DAQ

Initial Data

Each transverse wire length created individually and mechanically joined during assembly at V_{out} locations

References

[1] D.P. Boyle et al 2017, PRL **119** 015001 (2017) [2] D.P. Boyle *et al* 2023 *Nucl. Fusion* **63** 056020 [3] J.B. Titus et al Rev. Sci. Instrum. 92, 053520 (2021)

Forthcoming pending resolution of vented maintenance phase!