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RFP provides complementary environment to other toroidal 

configurations for EP physics

 Fast-ion dynamics in an RFP can be quite different from that in tokamaks and 

other configurations

 Weak toroidal field → large fast-ion 𝛽 and stronger drive

 Large magnetic shear → increased stability

 Energetic particle driven instabilities observed in MST

 Multiple bursty modes with fishbone-like temporal dynamics

 Opportunity to explore and validate important EP physics!



Outline

 MST and Neutral Beam Injection

 TRANSP/NUBEAM modeling of fast-ion distribution

 Neutral Particle Analyzer diagnostic for fast-ion energy distribution

 Fast particle confinement in 3D fields

 Stochasticity in presence of multiple islands

 Helical core of QSH state

 NBI driven bursting modes

 Well studied EPM

 Characterization of AE



 Comparable 𝐵𝜃and 𝐵𝜙 lead to strongly sheared magnetic field and 𝑞 < 1

MST provides complementary environment to study 

energetic particle physics

𝑞 𝑟 =
𝑟𝐵𝜙

𝑅𝐵𝜃
< 1



Tangentially injected neutral beam maximizes fast ion 

deposition



Classical TRANSP/NUBEAM modeling predicts core 

localized high pitch fast ion population

 Most ions confined near core: 𝑟/𝑎 < 0.4

 Mostly passing particles with pitch: 𝑣∥/𝑣 > 0.9

 Classical modeling predicts fast ion beta well in excess 

of core bulk beta

 Expected limited by onset of EP driven magnetic activity



NPA measures fast-ion energy distribution

 Resolves energy distribution of plasma ions (H and D) in 5-40keV range

 Viewing location determines sampled population
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 Density of rational surfaces increases towards 

𝑞 = 0

 Overlapping islands cause magnetic field to 

tangle and become stochastic

 Stochastic field results in rapid radial transport

 Thermal particles free-stream along field line 

enhancing radial energy and particle diffusion

 𝜏𝑡ℎ𝑒𝑟𝑚𝑎𝑙 ≈ 1𝑚𝑠

Magnetic island overlap causes field stochasticity
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Fast ions near classical confinement in stochastic field

 Decay of fusion neutron flux used to measure confinement in beam-blip 

experiments

W.W. Heidbrink and G.J. Sadler 1994 Nucl. Fusion 34 535



 𝑣𝐺𝐶 = 𝑣∥𝒃 +
𝑣⊥
2
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𝑩×𝜿

𝐵
= 𝑣∥𝒃 + 𝒗𝐷 (𝑬 × 𝑩 term unimportant)

 𝛻𝑩 and 𝜿 are both dominated by r (not R)

 𝒗𝐷 is ⊥ 𝐵 but in the surface

RFP field puts fast ion drift in magnetic surface

𝑞𝑓𝑖 co-inj

𝑞𝑚𝑎𝑔 Fast-ion rotational transform 𝑞𝑓𝑖 =
𝑟𝑣𝜙

𝑅𝑣𝜃

differs from 𝑞𝑚𝑎𝑔

 Guiding center motion at substantially 

different helicity than local magnetic 

perturbation



 𝑞𝑓𝑖 > 𝑞𝑚𝑎𝑔 for co-injection, 𝑞𝑓𝑖 < 𝑞𝑚𝑎𝑔 for counter-injection

RFP field puts fast ion drift in magnetic surface

𝑞𝑓𝑖 co-inj

𝑞𝑚𝑎𝑔

q mag    = 0.20

qfi co-inj = 0.24



 Fast ion resonant surfaces shifted away from 𝑞𝑀𝐻𝐷

 Co-injection:

 Effective helicity of guiding center motion (m=1,n=4) is without a corresponding 

magnetic perturbation within the plasma

 Core localized ions insensitive to stochastic magnetic transport, rendering them nearly 

classically confined

Substantial radial domain exists in core free of ion guiding 

center resonances for co-injected ions

 Counter-injection:
 With lowered 𝑞𝑓𝑖 , helicity of motion does match 

helicity of magnetic perturbation in plasma

 𝜏𝑓,𝑐𝑜 ≫ 𝜏𝑓,𝑐𝑡𝑟 ≳ 𝜏𝑡ℎ𝑒𝑟𝑚𝑎𝑙



 Quasi-single-helicity equilibrium mainly described by helical core (n=5) in MST 

with axisymmetric circular surfaces at the edge

 Occurs with growth of core-most mode and reduction of secondary modes

MST spontaneously transitions from stochastic to QSH



Fast ion confinement decreases with core helical 

perturbation

 Inverse relation between co-injected confinement and strength of helical 

perturbation revealed through beam-blip experiment

 Difference between co- and counter-injected ions in stochastic field 

disappears in QSH state

 Neo-classical effects (even

stellarator-like) become important

𝜏 𝑓
𝑖

(m
s)

𝑏𝑛=5(𝑎)/ 𝐵(𝑎) (%)

x co-inj

x ctr-inj



Fast ion population affects tearing mode amplitudes

 In plasmas with marginal likelihood of 

QSH, large fast ion content delays 

transition

 Discharges with no QSH transition show 

a reduction in core-most tearing mode 

amplitude

 Changes in tearing mode amplitude can be 

used as a proxy for fast-ion content
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High fast ion concentration drives multiple bursting modes

 Wavelet analysis reveals bursty EP modes

 Prevalent EPM/AE pair (triplet with smaller n=1 mode)

 Dynamics of triplet well studied

 Internal  𝑛 and  𝑏 structure measured

 Lin et al. PoP 2014

NBI
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EPM is clearly identified (typically n=5)

 Continuum mode destabilized by strong drive

 𝑓 ∝ 𝑣𝑏𝑒𝑎𝑚 , 𝜔 ≃ 𝑘∥𝑣𝐴
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 𝑓 ≃ 𝑛𝑓𝜙 − (𝑚 + 𝑙)𝑓𝜃 ,    𝑞𝑓𝑖 =
𝑓𝜙

𝑓𝜃

 𝑞𝑓𝑖
𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

≃
𝑚+𝑙

𝑛−𝑓/𝑓𝜙

𝑞𝑓𝑖
𝐻,𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

≃ 0.215 for m=1,n=5 at measured frequency

𝑞𝑓𝑖
𝐻,𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

≃ 0.18 for m=1,n=6
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EPM is clearly identified (typically n=5)

 Continuum mode destabilized by strong drive

 𝑓 ∝ 𝑣𝑏𝑒𝑎𝑚 , 𝜔 ≃ 𝑘∥𝑣𝐴

 Resonance condition is understood

 Can alter toroidal mode number of EPM by 

varying equilibrium (and Alfvén continuum)

 Driven unstable with 
𝑣𝑏

𝑣𝐴
⋛ 1

 Driving mechanism in pressure gradient

 Critical 𝛽𝑓𝑖 to destabilize EPM identification is 

underway

MST vessel



Nature of coincident n=4 AE is becoming clearer

 Alfvén eigenmode excited in continuum gap

 𝑓 ∝ 𝑣𝐴 (not TAE)



Nature of coincident n=4 AE is becoming clearer

 Alfvén eigenmode excited in continuum gap

 𝑓 ∝ 𝑣𝐴 (not TAE)

 Probably driven by EPM-altered 𝑛𝑓𝑖 profile



Nature of coincident n=4 AE is becoming clearer

 Alfvén eigenmode excited in continuum gap

 𝑓 ∝ 𝑣𝐴 (not TAE)

 Probably driven by EPM-altered 𝑛𝑓𝑖 profile

 Work in progress: experimentally map boundaries of where n=4 AE can exist

 Transport effect enhanced by mode coupling



Nature of coincident n=4 AE is becoming clearer

 Alfvén eigenmode excited in continuum gap

 𝑓 ∝ 𝑣𝐴 (not TAE)

 Probably driven by EPM-altered 𝑛𝑓𝑖 profile

 Work in progress: experimentally map boundaries of where n=4 AE can exist

 Transport effect enhanced by mode coupling

 New theory predicts a magnetic island induced gap in Alfvén continuum

 Cook, Hegna accepted PoP May 2015

 Matches mode number and frequency of observed AE



Summary

 Fast-ion confinement in the RFP exhibit:

 Near neo-classical confinement times for co-injected particles

 Co- vs counter-injection asymmetry

 Reduced confinement in QSH state

 EP mode classification is underway

 Dominant (n=5) EPM shows features of continuum destabilization:

 Frequency scales with beam velocity, peaking near Alfvén continuum

 Mode number altered by varying equilibrium (resonance condition)

 Driven by fast-ion pressure gradient

 Often present n=4 mode scaling with Alfvén speed implies AE character

 New theory predicts observed frequencies



Chirping EP mode triggered by tearing mode

 m=1,n=4 chirping mode most robustly 

observed in 200kA D-plasmas with D-beam 

injection

 Occurs after the n=1 tearing mode implying 

necessary triggering mechanism from the 

fast-ion redistribution induced by the 

tearing mode



Fast ion population affects QSH transition

 In plasmas with marginal likelihood of QSH, large fast ion content delays 

transition


