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RFP provides complementary environment to other toroidal
configurations for EP physics

» Fast-ion dynamics in an RFP can be quite different from that in tokamaks and
other configurations

Weak toroidal field - large fast-ion [ and stronger drive
Large magnetic shear - increased stability

» Energetic particle driven instabilities observed in MST

Multiple bursty modes with fishbone-like temporal dynamics

» Opportunity to explore and validate important EP physics!



Outline

» MST and Neutral Beam Injection

TRANSP/NUBEAM modeling of fast-ion distribution

Neutral Particle Analyzer diagnostic for fast-ion energy distribution
» Fast particle confinement in 3D fields

Stochasticity in presence of multiple islands

Helical core of QSH state
» NBI driven bursting modes

Well studied EPM
Characterization of AE



MST provides complementary environment to study
energetic particle physics

» Comparable Bgand B lead to strongly sheared magnetic field and g <'1
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Tangentially injected neutral beam maximizes fast ion

deposition

IBI~02-05T

Madison Symmetric Torus
R=1.5m; a=0.52 m
|, ~ 200 — 500 kA

T.(0) ~ 200 — 2000 eV
Ne ~Np ~ 103 cm3
Pulse length ~ 60-100 ms

NBI Parameter

Specification

Beam energy 25 keV

Beam power 1 MW

Pulse length 20 ms
Composition 95-97% H, 3-5% D
Energy fraction

(E:E/2E/3:E/18)

86%:10%:2%:2%




Classical TRANSP/NUBEAM modeling predicts core

localized high pitch fast ion population

» Most ions confined near core:7/a < 0.4

» Mostly passing particles with pitch: v /v > 0.9

» Classical modeling predicts fast ion beta well in excess

of core bulk beta

Expected limited by onset of EP driven magnetic activity
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NPA measures fast-ion energy distribution

» Resolves energy distribution of plasma ions (H and D) in 5-40keV range
» Viewing location determines sampled population
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» Fast particle confinement in 3D fields
Stochasticity in presence of multiple islands
Helical core of QSH state



Magnetic island overlap causes field stochasticity

0.2 :

0 15' + m = 1,n = 6 — 15 island widths
o / reversal surface

0.0F \/

2.0 = T » Density of rational surfaces increases towards
15} £ /| L. .
= I 55 | » Overlapping islands cause magnetic field to
2 | || tangle and become stochastic
5 10’ ":".‘ . . . . .
g : i » Stochastic field results in rapid radial transport
© 0.5 3 Thermal particles free-stream along field line
enhancing radial energy and particle diffusion
A‘ 10 Tthermal ~ Ims



Fast ions near classical confinement in stochastic field

» Decay of fusion neutron flux used to measure confinement in beam-blip
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RFP field puts fast ion drift in magnetic surface

vJZ_ BXVB i% . .
2w, |B|? T we |Bl vyb +vp (E X B term unimportant)
» VB and k are both dominated by r (not R)

» vp is L B but in the surface

4 Vee = U”b +

TU¢
Rvg

— mag

» Fast-ion rotational transform qri =

. — qpico-inj
differs from qq4 R

Guiding center motion at substantially
different helicity than local magnetic
perturbation



RFP field puts fast ion drift in magnetic surface

Gige CO- leection
q magn‘t?c | E
Qige Cir- iuechon E
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gy co-inj = 0.24

» qfi > Qmag for co-injection, qr; < qmqq for counter-injection



Substantial radial domain exists in core free of ion guiding
center resonances for co-injected ions

» Fast ion resonant surfaces shifted away from qgp

» Co-injection:

Effective helicity of guiding center motion (m=1,n=4) is without a corresponding
magnetic perturbation within the plasma

Core localized ions insensitive to stochastic magnetic transport renderlng them nearly
03— T 1 — T 1

classically confined

» Counter-injection:

With lowered qf;, helicity of motion does match
helicity of magnetic perturbation in plasma

Tf,co >> Tf,ctr < Tthermal
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MST spontaneously transitions from stochastic to QSH

» Quasi-single-helicity equilibrium mainly described by helical core (n=5) in MST
with axisymmetric circular surfaces at the edge

Occurs with growth of core-most mode and reduction of secondary modes
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Fast ion confinement decreases with core helical
perturbation

» Inverse relation between co-injected confinement and strength of helical
perturbation revealed through beam-blip experiment

» Difference between co- and counter-injected ions in stochastic field
disappears in QSH state

» Neo-classical effects (even

X CO-inj
X ctr-inj
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Fast ion population affects tearing mode amplitudes

» In plasmas with marginal likelihood of
QSH, large fast ion content delays
transition

» Discharges with no QSH transition show
a reduction in core-most tearing mode
amplitude

Changes in tearing mode amplitude can be
used as a proxy for fast-ion content

00

gzmj
T 100f
of

—

n flux (arb)

b, . /IB(a) (%)

(@) g—
i / | -
i I.l' _
(D)
i N
/A/""—vw«_ lh\“-
No NBI

20
Time (ms)

o o =
- f=Y [ e] (=]
MBI Fower

=
s

(W)



Outline

4

» NBI driven bursting modes
Well studied EPM
Characterization of AE



High fast ion concentration drives multiple bursting modes

» Wavelet analysis reveals bursty EP modes

» Prevalent EPM/AE pair (triplet with smaller n=1 mode)

» Dynamics of triplet well studied 250
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High fast ion concentration drives multiple bursting modes

» Wavelet analysis reveals bursty EP modes

» Prevalent EPM/AE pair (triplet with smaller n=1 mode)

Dynamics of triplet well studied

Internal 7i and b structure measured
Lin et al. PoP 2014
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EPM is clearly identified (typically n=95)

» Continuum mode destabilized by strong drive
f X Upeam » W = kllvA
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EPM is clearly identified (typically n=95)

» Continuum mode destabilized by strong drive e —
1 ¢ Qs e
f X vbeam ’ w = k”vA 02_- _¢.___:’____¢___¢___‘__qﬁH,required
» Resonance condition is understood |

Can alter toroidal mode number of EPM by
varying equilibrium (and Alfvén continuum)

S
f=nfe—(m+Dfy , qri =7 -5
o X
required m+l
) ~ =5
Ari n—f/fo X

qﬁi’required ~ (.215 for m=1,n=5 at measured frequency

qp; 1Tt ~ 0.18 for m=1,n=6




» Continuum mode destabilized by strong drive
f X Vpeam » W = kllvA
» Resonance condition is understood

Can alter toroidal mode number of EPM by
varying equilibrium (and Alfvén continuum)

. . v
» Driven unstable with -2 % 1
VA

Driving mechanism in pressure gradient

EPM is clearly identified (typically n=95)
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» Continuum mode destabilized by strong drive
f X Vpeam » W = kllvA
» Resonance condition is understood

Can alter toroidal mode number of EPM by
varying equilibrium (and Alfvén continuum)
Yp >

VA < 1

Driving mechanism in pressure gradient

» Ciritical ¢; to destabilize EPM identification is
underway

» Driven unstable with

EPM is clearly identified (typically n=95)




Nature of coincident n=4 A.

» Alfvéen eigenmode excited in continuum gap

f < vy (not TAE)
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1 is becoming clearer

Nature of coincident n=4 A.

» Alfvéen eigenmode excited in continuum gap

f < vy (not TAE)

» Probably driven by EPM-altered n;; profile
1.2[
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Nature of coincident n=4 AE is becoming clearer

» Alfvéen eigenmode excited in continuum gap
f < vy (not TAE)

» Probably driven by EPM-altered n;; profile

» Work in progress: experimentally map boundaries of where n=4 AE can exist

Transport effect enhanced by mode coupling
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Nature of coincident n=4 AE is becoming clearer

» Alfvéen eigenmode excited in continuum gap
f < vy (not TAE)

» Probably driven by EPM-altered n;; profile
» Work in progress: experimentally map boundaries of where n=4 AE can exist
Transport effect enhanced by mode coupling

» New theory predicts a magnetic island induced gap in Alfvén continuum
Cook, Hegna accepted PoP May 2015
Matches mode number and frequency of observed AE



Summary

» Fast-ion confinement in the RFP exhibit:
Near neo-classical confinement times for co-injected particles
Co- vs counter-injection asymmetry

Reduced confinement in QSH state

» EP mode classification is underway

Dominant (n=5) EPM shows features of continuum destabilization:
Frequency scales with beam velocity, peaking near Alfvén continuum
Mode number altered by varying equilibrium (resonance condition)
Driven by fast-ion pressure gradient

Often present n=4 mode scaling with Alfvén speed implies AE character

New theory predicts observed frequencies



Chirping EP mode triggered by tearing mode

A —— _
— Oht de m=0, n=1 ] o
S 1ok caring mode A 1 1 » m=1,n=4 chirping mode most robustly

; b A i observed in 200kA D-plasmas with D-beam
BN 1 injection

" Occurs after the n=1 tearing mode implying
necessary triggering mechanism from the
fast-ion redistribution induced by the
tearing mode
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Fast ion population affects QSH transition

» In plasmas with marginal likelihood of QSH, large fast ion content delays
transition
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